skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cowger, Win"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Infrared spectroscopy is a widely used tool for studying microplastics and identifying microparticles. Researchers rely on spectral libraries to differentiate between synthetic and natural materials. Unfortunately, spectral library matching is not perfect, and best practices require researchers to use time consuming, manual peak matching to assess spectral matches. Moving toward automated matching requires increased confidence in the matching process. Using spectra matching software may increase the efficiency of particle identification, however some matching strategies may confuse natural materials such as cotton, silk, and plant matter with common classes of synthetics such as polyesters and polyamides. In this experiment, we prepared 22 pristine sample materials from natural and synthetic sources and measured micro-Fourier transform infrared (µFTIR) spectra in transmission mode for each sample using a Thermo Nicolet iN10 MX instrument. The collected spectra were then input into two spectral library matching systems (Omnic Picta and Open Specy), using a total of five identification routines. Next, we placed a subset of four pristine microplastic materials in a biologically active river system for two weeks to simulate environmental samples. These simulated environmental samples were processed using 10% hydrogen peroxide for 24 h to remove organic contamination and then identified using the strongest performing library. We found that libraries with fewer sample spectra produced lower correlation matches and that using derivative correction greatly reduced the number of inaccuracies in identifying materials as either natural or synthetic. We also found that environmental fouling reduced the correlation value of library matches when compared to pristine particles, however the effect was not consistent across the four materials tested. Overall, we found that the accuracy of automated library matching in the tested systems and processing routines varied from 64.1 to 98.0% for distinguishing between natural and synthetic materials, and that a high Hit Quality Index (HQI) did not always correlate with accuracy. These results are important for the microplastic field, demonstrating a need to rigorously test spectral libraries and processing routines with known materials to ensure identification accuracy. 
    more » « less
  2. The ubiquitous pollution of the environment with microplastics, a diverse suite of contaminants, is of growing concern for science and currently receives considerable public, political, and academic attention. The potential impact of microplastics in the environment has prompted a great deal of research in recent years. Many diverse methods have been developed to answer different questions about microplastic pollution, from sources, transport, and fate in the environment, and about effects on humans and wildlife. These methods are often insufficiently described, making studies neither comparable nor reproducible. The proliferation of new microplastic investigations and cross-study syntheses to answer larger scale questions are hampered. This diverse group of 23 researchers think these issues can begin to be overcome through the adoption of a set of reporting guidelines. This collaboration was created using an open science framework that we detail for future use. Here, we suggest harmonized reporting guidelines for microplastic studies in environmental and laboratory settings through all steps of a typical study, including best practices for reporting materials, quality assurance/quality control, data, field sampling, sample preparation, microplastic identification, microplastic categorization, microplastic quantification, and considerations for toxicology studies. We developed three easy to use documents, a detailed document, a checklist, and a mind map, that can be used to reference the reporting guidelines quickly. We intend that these reporting guidelines support the annotation, dissemination, interpretation, reviewing, and synthesis of microplastic research. Through open access licensing (CC BY 4.0), these documents aim to increase the validity, reproducibility, and comparability of studies in this field for the benefit of the global community. 
    more » « less